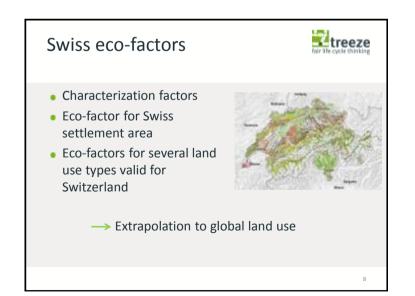
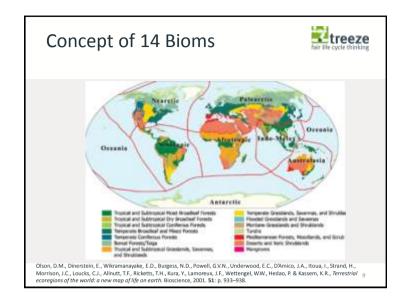
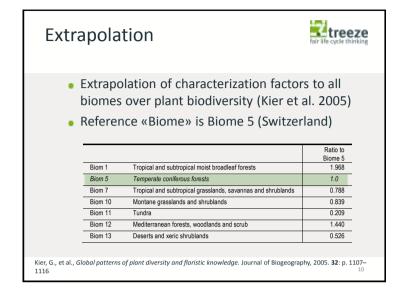


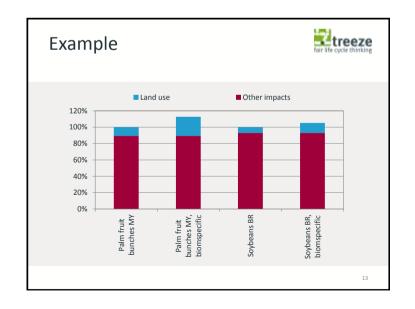
treeze

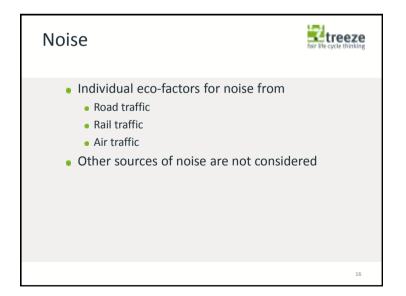




Eco-factor Swiss settlement area


	Edition 2013	Edition 2006
Normalization (km ² *a SA-eq.)	2'437	3'378
Current Flow (km ²)	3'027	2'791
Critical Flow (km ²)	3'535	3'224
Weighting (-)	0.73	0.749
Eco-factor (EP/(m ² *a SA-eq.))	300	220


- Current flow: Swiss settlement area
- Critical flow: Sustainability goal: 400 m² per inhabitant, future population in 2035
- Normalization: characterized settlement area


	sulting Eco-f	acte	/15			fair life	e cycle thinking
CORINE	+ Land use types	Biom 1	Biom 5	Biom 8	Biom 11	Biom 13	Edition 2006
		(UBP/m2)	(UBP/m2)	(UBP/m2)	(UBP/m2)	(UBP/m2)	(UBP/m2)
		Tropical and subtropical moist broadleaf forests	Temperate coniferous forests	Temperate grasslands, savannas and shrublands	Tundra	Deserts and xeric shrublands	
	Settlement areas						
111	Occupation, urban, continuously built	600		240	250	420	260
112	Occupation, urban, discontinuously built	360			150		220
114	Occupation, rural settlement	360			150	250	
121	Occupation, industrial area	600	300	240	250	420	220
	Agricultural areas						
211	Occupation, arable, non-irrigated	810	420	330	330	600	100
211c	Occupation, arable, organic	290			120	210	
22	Occupation, permanent crop	570		230	240	420	29
231	Occupation, pasture and meadow	450		180	190	330	57
244	Occupation, agro-forestry areas	270	140	110	110	200	-
	Forests and shrubs						
311	Occupation, broad leafed forest	60	30	24	26	45	15
312	Occupation, coniferous forest	60	30	24	26	45	15
312a	Occupation, coniferous plantations	240	120	96	100	180	100

	Road	Rail	Air
Normalization (HAp/a)	800'000	800'000	800'000
Current Flow (HAp/a)	716'000	61'000	27'000
Critical Flow (HAp/a)	436'000	33'000	15'000
Weighting (-)	2.7	3.5	3.3
Eco-factor (EP/HAp)	3'400'000	4'300'000	4'100'000
Normalization: HA Current flow: Son	•		curves

Implementation

• Introduction of new elementary flows

→ «noise kilometer»

• Added to traffic operation datasets

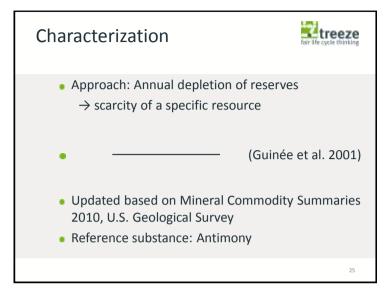

Elementary flow	Unit
Noise, aircraft, passenger	pkm
Noise, aircraft, freight	tkm
Noise, rail, passenger train, average	pkm
Noise, rail, freight train	tkm
Noise, road, passenger car, average	km
Noise, road, lorry, average	km

Eco-factor «noise kilometer»

Eco-factors are calculated based on eco-factors for «highly annoyed» persons, traffic performance and average noise level of each transportation mean

Elementary flow	Unit	Eco-factor
Noise, aircraft, passenger	EP/pkm	1.4
Noise, aircraft, freight	EP/tkm	14
Noise, rail, passenger train, average	EP/pkm	5.2
Noise, rail, freight train	EP/tkm	15
Noise, road, passenger car, average	EP/km	21
Noise, road, lorry, average	EP/km	210

Political goal



24

- Switzerland should reduce its resource consumption to sustainable levels (Federal Council's cleantech strategy)
- The Swiss federal government is promoting actions within the current "Measure 4b" (integrated product policy) to close material cycles

	Edition 2013	
Normalization (t Sb-eq)	904	
Current Flow (t Sb-eq)	904	
Critical Flow (t Sb-eq)	904	
Weighting (-)	1.0	
Eco-factor (EP/t Sb-eq)	1'100	

Critical flow: Status quo (no increase)



	sulting Eco-factors		tair the cycle thinking
		1	
Substance	Specification	Characterization (kg/kg Sb-eq.)	Eco-factor (UBP/kg)
Metals			
Copper	1.18% in sulfide, Cu 0.39% and Mo 8.2E-3% in crude ore	0.0010	1'100
Chromium	25.5% in chromite, 11.6% in crude ore	0.0043	4'800
Lead	5.0% in sulfide, Pb 3.0%, Zn, Ag, Cd, In	0.015	17'000
Tantalum	81.9% in tantalum, 1.6E-4% in crude ore	1.33	1'500'000
Silver	3.2 ppm in sulfide, Ag 1.2 ppm, Cu and Te, in crude ore	2.05	2'300'000
Gold	4.9E-5% in ore	23.1	26'000'000
Minerals		<u> </u>	
Gypsum		0.00001	6.30
Phosphorus	18% in apatite, 4% in crude ore	0.00006	62.0
Sulfur		0.00007	72.0

Application

- Based on the target the eco-factors should not address the extraction of a resource but the dissipative use only
- Dissipative use = materials are degraded, dispersed and lost in the course of usage and no longer available for future usage
- Remaining portion is only «on loan»
- resource extraction and recycled resources

Calculation of environmental impact of consumptive resource use	
$EIR = R_{ex} \times ef_R - R_{rec} \times ef_R = R_{diss} \times ef_R + R_{landf} \times ef_R$	
 EIR: environmental impact of the resource R_{ex}: amount of resource extracted R_{rec}: amount of resource recycled R_{diss}: amount of resource dissipated to nature (emitted to air, water, soil) 	
R _{landf} . amount of resource landfilled	
ef _R : eco-factor of the resource ("resource depletion" only, not including environmental impacts caused during mining etc).	
29	

7

Thank you very much for your attention!
Contact: <u>buesser@treeze.ch</u> Website: <u>www.treeze.ch</u> Acknowledgement: <i>Funding:</i> Swiss Federal Office for the Environment FOEN, Öbu <i>Co-operation (until 10.2012):</i> Karin Flury, Matthias Stucki <i>Suggestions, preparatory work and practical tests:</i> Advisory group, Hans Bögli, Laura de Baan, Fredy Dinkel, Emil Franov, Paul Filliger, Ernst Furrer, Daniel Hartmann, Bettina Hitzfeld, Blaise Horisberger, Michael Hügi, Harald Jenk, Sybille Kilchmann, Martin Kilga, Thomas Köllner, Nina Mahler, Sandy Ruiz Mendoza, Reto Muralt, Beat Müller, Carla Ng, Christian Pillonel, Robin Quartier, Monika Schaffner, Kaarina Schenk, Martin Scheringer, Ulrich Sieber, Peter Straehl, Josef Tremp, Roland von Arx